
3D InundationMapping: A Comparison
Between Deep Learning Image
Classification and Geomorphic Flood
Index Approaches
Asmamaw Gebrehiwot and Leila Hashemi-Beni*

Geomatics Program, Department of Built Environment, North Carolina A&T State University, Greensboro, NC, United States

Inundation mapping is a critical task for damage assessment, emergency management,
and prioritizing relief efforts during a flooding event. Remote sensing has been an effective
tool for interpreting and analyzing water bodies and detecting floods over the past
decades. In recent years, deep learning algorithms such as convolutional neural
networks (CNNs) have demonstrated promising performance for remote sensing image
classification for many applications, including inundation mapping. Unlike conventional
algorithms, deep learning can learn features automatically from large datasets. This
research aims to compare and investigate the performance of two state-of-the-art
methods for 3D inundation mapping: a deep learning-based image analysis and a
Geomorphic Flood Index (GFI). The first method, deep learning image analysis involves
three steps: 1) image classification to delineate flood boundaries, 2) integrate the flood
boundaries and topography data to create a three-dimensional (3D) water surface, and 3)
compare the 3D water surface with pre-flood topography to estimate floodwater depth.
The second method, i.e., GFI, involves three phases: 1) calculate a river basin
morphological information, such as river height (hr) and elevation difference (H), 2)
calibrate and measure GFI to delineate flood boundaries, and 3) calculate the
coefficient parameter (α), and correct the value of hr to estimate inundation depth. The
methods were implemented to generate 3D inundation maps over Princeville, North
Carolina, United States during hurricane Matthew in 2016. The deep learning method
demonstrated better performance with a root mean square error (RMSE) of 0.26 m for
water depth. It also achieved about 98% in delineating the flood boundaries using UAV
imagery. This approach is efficient in extracting and creating a 3D flood extent map at a
different scale to support emergency response and recovery activities during a flood event.
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1 INTRODUCTION

Flooding is one of the most common and frequently occurring natural hazards that affects lives,
property, and the environment around the world (Eccles et al., 2019). Climate change has played a
vital role in the current increase in flooding occurrence in last few years. The impacts of flooding such
as the loss of lives, properties, infrastructures, and agricultural harvests, cost in the range of millions
to billions of dollars per single event in the United States (Huang et al., 2018). For example,
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Hurricane Harvey in 2017 caused massive flooding in Houston,
Texas and the damage associated with it was estimated over $125
billion. Rapid detection and mapping of floods are essential for
emergency response, damage assessment, prioritizing relief
efforts, and assessing future flood risk.

Remote sensing optical and synthetic aperture radar (SAR)
methods have been widely used for flood mapping applications
for decades (Shen et al., 2019; Anusha and Bharathi, 2020). The
optical sensor can see the world like the human eye and acquire
high-resolution data, but it does not work effectively when the site
becomes cloudy and dark (Psomiadis et al., 2020). Although SAR
is one of the effective sensors to detect flood areas even under
cloud cover regardless of time (day/night), it is still challenging to
create accurate flood maps using this data due to its spatial
resolution and speckle noises (Rahman and Thakur, 2018).
Recently, unmanned aerial vehicles (UAVs) have been
considered reliable remote sensing sources for acquiring
geospatial data for flood mapping applications because of their
ability to collect high-resolution imagery with flexibility in the
frequency and time of data acquisition (Annis et al., 2020;
Coveney et al., 2017). In contrast, their short flight endurance
and small-scale coverage remain areas of weakness for their wide-
scale implementation in remote sensing.

Several researchers have studied and proposed different
remote sensing methods for flood extent mapping (Gao et al.,
1996; Long et al., 2014; Feng et al., 2015; Nandi et al., 2017;
Gebrehiwot and Hashemi-Beni, 2020a; Gebrehiwot and
Hashemi-Beni, 2020b; Gebrehiwot et al., 2021; Hashemi-Beni
and Gebrehiwot, 2021). Among these methods, deep learning
algorithms such as CNNs have shown promising performance for
flood extent mapping. CNN can automatically extract features,
learn directly from the input images, and successfully handle large
training datasets (Krizhevsky et al., 2012). Recent studies used
CNNs to extract two-dimensional (2D) inundation extents
automatically and achieved promising results (Gebrehiwot
et al., 2019; Peng et al., 2019; Sarker et al., 2019). For example,
Gebrehiwot et al. (2019) modified pre-trained fully convolutional
neural network (FCNs) models to generate an inundation extent
using UAV optical images and achieved more than 95% accuracy
on extracting the flood extent compared to 87% accuracy of
support vector machine method (SVM). Similarly, Peng et al.
(2019) used CNN to generate a flood extent map using pre-
Hurricane and post-Hurricane Harvey flood imagery and
achieved a precision of 0.9002 and a recall of 0.9302.

In addition to the flood extent, it is essential to monitor
inundation levels because they determine the magnitude of
floods. Many studies have applied structure from motion
(SfM) for flood applications (Meesuk et al., 2012; Meesuk
et al., 2015; Hashemi-Beni et al., 2018). The SfM technique is
used to reconstruct the objects’ 3D structure from a series of 2D
sequential images. Unlike the traditional photogrammetric
methods, SfM solves the multi-camera viewing problem, and
generates high-density point clouds from high-resolution images
(Hashemi-Beni et al., 2018).

In addition to the flood extent mapping methods, many
researchers estimated inundation depth using flood models
and characteristic analysis (Sanders et al., 2007; Wing et al.,

2017). For example, Sanders et al. (2007) investigated the
effect of the spatial resolution of digital elevation model
(DEM) on the accuracy of floodwater depth estimation using
an inundation model. Wing et al. (2017) developed a
hydrodynamic-based model for water level estimation.
However, the simulation analysis does not always provide
accurate results due its dependency to numerous model
parameters and hydrological assumptions. This situation is
particularly noticeable where limited hydrological data are
available. There are also several work proposing to measure
floodwater depth based on a 2D water extent map with an
associated DEM (Matgen et al., 2007; Schumann et al., 2007;
Gebrehiwot et al., 2021). Matgen et al. (2007) used flood extent
and lidar data to estimate floodwater depth. The flood extent
edges intersected with DEM to calculate the water polygons’
boundary line elevation based on their approach. Similar research
was conducted by Schumann et al. (2007), who retrieved the
floodwater depth by combining the regression model and TIN
generation. Manfreda et al. (2019) developed a DEM-based
inundation depth prediction method based on a geomorphic
descriptor—GFI. The GFI was first proposed by Samela et al.
(2017) to generate flood extent maps in data-poor environments
and large-scale analyses based on available information
worldwide. This approach was tested in a case study in
southern Italy and showed satisfactory performance. This
method is particularly suitable for the area where there is data
scarcity. However, the method is effective only for a large study
area, in which the flow accumulation values of the whole river
basin or subbasin are needed to the GFI calculation and
floodwater depths analysis. In all of the DEM-based
approaches, the accuracy of water depth heavily depends on
the quality of flood extent map and DEM accuracy. Since deep
learning algorithms such as CNNs have been proven to be an
efficient technique for flood extent mapping, integrating deep
learning-based water extent maps and DEM is expected to
provide high accuracy floodwater depth (Gebrehiwot et al.,
2021). Based on that context, this research aims to compare

FIGURE 1 | Inundation depth estimation using deep learning image
classification and DEM.
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and evaluate the performance of two main state-of-the-art
methods for 3D inundation mapping: a deep learning-based
image analysis and Geomorphic Flood Index (GFI). To make
the methods comparable, the inundation mappings were
implemented over the same study area and the same
topography information was applied for spatial analyses.

2 METHODOLOGY

2.1 Inundation Depth Estimation Using Fully
Convolutional Neural Network Image
Segmentation and Digital Elevation Model
The research uses the FCN method studied by Gebrehiwot and
Hashemi-Beni (2021). Thus, we briefly explain the methodology
here, for more details about the method and its implementation
please read the reference. The method for estimating a 3D flood
map (flood extent and water depth) consists of three main steps:
1) Flood extent map generation, 2) 3D water surface generation,
and 3) 3D flood mapping (Figure 1). Each phase of the study is
explained in the following sections.

2.1.1 2D Flood Extent Map Generation
In this stage, the flood extent map is created using a deep
learning-based model called FCN-8s. The FCN-8s was
proposed by Long et al. (2015) for semantic segmentation
application. It is the modified version of the VGG-16 CNN
model developed by Simonyan et al. (2014). The network was
adjusted so that the convolutional layers replace the fully
connected layers of the VGG-16 network. This enables the
network to implement pixel-level classification rather than
per-image class prediction, as VGG-16 initially used. The
study used FCN-8s to delineate the flood boundaries because
it applied for flood extent mapping in literature and
demonstrated promising results (Gebrehiwot et al., 2019).

The flood dataset including 150 optical UAV images with
4,000 × 40,000 pixels was used to fine-tune and train the FCN-
8s. We manually annotated the UAV dataset into a flood,
vegetation, and other classes to create training and validation
data. During training, the 15-fold cross-validation strategy was
used to avoid overfitting the data and improve the
performance of the models. For this, we partitioned the
data (150 images) randomly into 15 folds. At each run, the
union of 14 folds was put together for training the FCN model,
and the remaining one-fold was used as a testing or validation
set to measure the classification errors. We repeated the above
steps 15 times, using a different fold as the testing set each
time. Finally, the error from all folds was averaged to estimate
the total classification errors. The model is trained using
Stochastic Gradient Descent (SGD) algorithm for 10 epochs
with a learning rate of 0.001 and a maximum batch size of 2.
The FCN-8s is trained by applying data augmentation
techniques such as randomly cropping, translation, and
random rotation to artificially generate new training data
from existing training data (Gebrehiwot et al., 2021). These
operations are applied to images in the input space. The study

also used the median frequency balancing method to solve the
class imbalance issue. Once the FCN-8s network is trained, a
flood extent raster is generated for our test area, and it is
converted to inundation polygons for further spatial data
analysis, integration, and visualization. By spatial overlaying
the polygon of permanent waters in Princeville on top of the
flood extend results, the floodwater were extracted.

2.1.2 3D Water Surface Creation
This stage will use the hydro flattening concept, assuming that the
surfaces of water are flat within each flooded area. The local 3D
floodwater surface is created by intersecting the floodwater
polygons (plans) with the pre-flood DEM using geospatial
analysis. This process assigns an elevation to each polygon
vertices. Statistical and spatial analysis will be done to detect
and remove noises within each polygon.

2.1.3 3D Flood Mapping
The floodwater depth for each cell in the raster or for each
polygon is estimated by subtracting the calculated floodwater
surface/elevation from topographic elevation at each grid cell
within the flooded area. The elevation difference between the 3D
water surface (H) and its corresponding pixel point on the DEM
(h) gives the inundation depth (I.D.):

ID � H − h (1)
The water depth measurements can be updated based on

gauge datum if it needed.

2.2 Inundation Depth Estimation Using
Geomorphic Flood Index
2.2.1 Inundation Extent Estimation
This study adopted a hydrogeomorphic method based on the GFI
(Manfreda et al., 2019) to generate inundation depth for our study
area. Thus, we briefly explained the methodology here, for more
details about the method and its implementation please read the
reference.

GFI is a descriptor of the basin’s morphology proposed to
indicate flood susceptibility in a specific area. This approach
provide reliable inundation extent maps in data-scarce regions
and large-scale applications (Samela et al., 2017; Manfreda et al.,
2019). According to Samela et al. (2017), the GFI at each study
point (e.g., green point in Figure 2) is computed as the logarithm
of the ratio between river depth (hr) and the elevation difference
(H) (see Eq. 1).

GFI � ln(hr
H
) (2)

Where hr is the river depth, the parameter H represents the
difference between the cell’s elevation under exam and the
elevation of the above-identified path’s final point. The depth
of the river (hr) is estimated as a function of the upslope
contributing area using a hydraulic scaling relationship

hr � aArn (3)
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Where Ar is the contributing area, a is a scale factor, and n is a
dimensionless exponent. Based on Eq. 1, locations with GFI
values ≥0 are in the flood-prone areas.

Manfreda et al. (2019) used the GFI approach for floodwater
level estimation. The GFI is computed by assuming the coefficient
using the threshold calibrated with the linear binary classification.
The coefficient is estimated using Eq. 3.

α � ( 1
exp(τ)) (4)

2.2.2 Inundation Depth Estimation
Finally, the water depth (W.D.) within the delineated flood-prone
areas estimated by using hr and H as follows (Figure 2):

WD � hr −H (5)

2.3 Comparison and Evaluation
2.3.1 Flood Extent
The study used a confusion matrix to analyze the accuracy of the
FCN-based image classification and the delineation of the flood
extent. A confusion matrix provides detailed information on how
the classifier is performing. The information include: 1) true
positive, i.e., the classification results correctly indicate the
positive class as positive; 2) true negative (T.N.), i.e., when the
algorithm correctly predicts the negative class as negative (T.P.);
3) false positive (F.P.), i.e. when the classifier incorrectly predicts
the negative class as positive; and 4) false negative (F.N.) refers to
the number of predictions where the algorithm incorrectly
predicts the positive class as negative. In addition to the
classification accuracy, the kappa coefficient was used to
summarize the information obtained from the confusion
matrix. The Kappa coefficient is a metric used to compare an
observed accuracy with an expected accuracy or random chance.
On the other hand, the performance of the GFI-based flood extent
mapping approach is evaluated using the receiver operating

characteristic curve (ROC). This curve plots two parameters:
True Positive Rate and False Positive Rate at different
classification thresholds.

2.3.2 Flood Depth
The study used the RMSE assessment technique to quantify the
two methods’ performance in estimating the inundation depth.
The RMSE is the square root of the average squared distance
between the true and estimated scores and is used as an error
metric for predicting quantitative data. The water gauge
measurements during the flood events were used as ground
truth data to validate and evaluate these inundation depth
estimation approaches.

3 STUDY AREA AND DATA

Two flood-prone areas in North Carolina were selected for the
research: Town of Princeville, and the city of Lumberton;
because high resolution UAV datasets of the areas during
two flooding events were available to the study. The Town
of Princeville is located along the Tar River in Edgecombe
County in North Carolina (Figure 3). Princeville has gained
national attention over the years because of recurring storm
flooding. Several flood events have repeatedly affected
Princeville for many years since its founding because of its
low-lying location. Hurricane Floyd (1999), Hurricane
Matthew (2016), and Hurricane Florence (2018) resulted in
massive flooding in Princeville and caused enormous
destruction and loss of human lives.

Lumberton is a city in Robeson County, North Carolina,
United States and is located on the Lumber River in the
coastal plains region of North Carolina (Figure 4). The
Lumber River has a long history of flooding problems. In
the 1960s, the Natural Resources Conservation Service
(NRCS) developed a plan to mitigate the flooding issues

FIGURE 2 | A basin cross-section and its parameters to calculate the geomorphic GFI and the inundation depth (Source: Manfreda et al., 2019).
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and allow safer land development for commercial,
agricultural, and residential uses. It included constructing a
levee system along the Lumber River and operation
and maintenance plans to maintain the channels and levee
system.

The data used for the research include:

• UAV Imagery: The UAV high-resolution imagery was
captured by the North Carolina Emergency Management
(NCEM) during hurricane Matthew in 2016 and Hurricane
Florence in 2018 ver the study areas. The size of each image
is 4,000 × 4,000, with a resolution of 2.6 cm. The FCN
method was employed to segment the UAV imagery into

FIGURE 3 | Study area: Princeville. (A) The area used to calculate the GFI—Tar River Basin; (B) The study area used for inundation depth calculation for deep
learning approach.

FIGURE 4 | The study area used to train the CNN network—Lumberton, NC, and during-event aircraft imagery taken in October 2016.
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flood and non-flood class and create flood extent map of the
study areas.

• LiDAR Data: The pre-flood LiDAR data was used to
estimate floodwater depth over the study areas using
both method. The LiDAR with two pulses per square
meter (pls/m2) with an accuracy of 0.0925 m RMSE was
collected by the North Carolina Emergency Management
in 2014.

• FloodMap: The Flood hazardmap forHurricaneMatthewwas
employed as an input and for calibration of the GFI method.
This map was created by the Natural Conservancy and the
Arizona State University center using a random forest
algorithm using synthetic aperture radar data (Schaffer-
Smith et al., 2019; Schaffer-Smith et al., 2020) (Figure 5).

• USGS Gauge Reading: The USGS water gauge
measurements during the flood events were used as
ground truth to validate and evaluate the water depth
estimations by the methods. The USGS Gauge Stations
collect time-series data that describe stream level,
streamflow, reservoir and lake levels, surface-water

quality, and rainfall. They are used to collect continuous
streamflow data year-round. The floodwater depth at the
USGS Surface Water Gauge Station, 02083500 Tar River at
Tarboro, NC, was collected for evaluation. The Tar River at
the Tarboro, NC site is located along with US HWY 64
Business, directly across the Tar River from Princeville
(Figure 2B). This site is ideal for measurements of
stream levels during a flood event due to its proximity to
the study area makes (Hashemi-Beni et al., 2018).

4 RESULTS

In this study, the flood extent maps were implemented in
MATLAB and Python. The geospatial data integration and
spatial analyses were conducted in ArcGIS. The computing
unit was configured with 32 GB memory, an Intel(R) Xeon(R)
ES-2620 v3 @ 2.40 GHz × 2 processors memory, and a single
NVIDIA Quadro M4000 GPU.

4.1 Deep Learning and Digital Elevation
Model-Based Inundation Depth Estimation
4.1.1 Inundation Extent Extraction
This section presented the flood extent mapping results obtained
using Method 1. Figure 6 shows one sample flood extent result
generated using the fine-tuned FCN-8s model. The results shows
that the image calcification approach can effectively extract the
flooded area from the input image. The overall accuracy
calculated by the confusion matrix and kappa index achieved
by FCN-8s was about 98% and 0.93, respectively.

4.1.2 Floodwater Depth
Figure 7 shows the flood depth maps generated using the
presented approach for the study area. Figure 7B illustrates
the inundation map created for the test image (Figure 7A)
using FCN-8s. The result shows the FCN-8s accurately

FIGURE 5 | Flood extent map of North Carolina during Hurricane
Matthew in 2016 Source: (Schaffer-Smith et al., 2020).

FIGURE 6 | One sample flood extent map result. (A) Test image; (B) Flood extent map.
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FIGURE 7 | Flood depths results; (A) Test image; (B) Flood extent from CNN; (C) Depth result (Unit: meter).

FIGURE 8 | Tar River basin morphological features measured form the LiDAR DEM. (A) River depth (hr); (B) Elevation difference (H); (C) Geomorphological flood
index (GFI).

Frontiers in Remote Sensing | www.frontiersin.org June 2022 | Volume 3 | Article 8681047

Gebrehiwot and Hashemi-Beni 3D Inundation Mapping: A comparison

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


extracted the flood extent from the test UAV image. Floodwater
depth map results obtained are illustrated in Figure 7C. These
maps were created by subtracting water surface raster data and
pre-flood DEM using Eq. 1. The highest water depth measured
using the proposed method is 1.9—this depth value is recorded in
the Tar River area, as shown in Figure 7C (red zone). The site
with zero water depth or non-flooded regions is shown in black.

4.2 Geomorphic Flood Index-Based
Inundation Depth Estimation Results
For the GFI-based mapping, LiDAR-based DEM and a small
portion of the flood hazard map of the basin of interest (The

Natural Conservancy and the Arizona State University center) are
used as input for mapping and calibration purposes (Figure 5).

GFI approach results the following outputs that are essential to
estimate floodwater depth. 1) the water level in each cell of the
river network (hr) (Figure 8A); 2) difference in elevation of each
DEM cell (basin location) to the nearest river (H) (Figure 8B); 3)
derivation of the GFI (Figure 8C); and 4) optimal threshold (τ).
The DEM is generated in ArcGIS using LiDAR data. Figure 9
shows the flood depth map generated using GFI in the extent of
the deep learning flood map.

Then, water level values (hr) in each cell of the river network
were used to estimate the floodwater depth (W.D.) in all
hydrologically linked cells of the study area estimated using
the water level values (hr) in each cell of the river network
and the difference in elevation H between the location under
examination (H) Eq. 5.

An inundation depth comparison between the two methods is
shown in Figure 10. Flood depth maps are compared to
determine if the spatial distribution of water depth
measurements is correlated. The floodwater depth rasters
compared cell-by-cell, and a water depth difference surface

was created. A report of statistics calculated from inundation
differences maps is also presented in Figure 10B—the
performance of the method was evaluated by comparing the
I.D.s against the water gauge data. The RMSE measured for the
proposed method and GFI using the gauge elevation data is 0.26
and 0.39 m, respectively. Method 1 (image classification) offers
better estimation performance than GFI based on the research
results.

The frequency distribution chart shows most of the depth
difference recorded between these two methods. The resulting
maximum and minimum absolute flood depth differences
between GFI and deep learning-based flood map are 0.74 and
0.006 m, respectively. The highest water depth difference values

FIGURE 9 |Depth results for GFI in the deep learning-based flood extent
(Unit: meter).

FIGURE 10 | Floodwater Depth Comparison. (A) Water depth difference map between the image classification-based method and GFI method; (B) Histograms
that shows the distribution of the flood depth difference between the two methods.
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were recorded in the center of the river area. The mean difference
value was 0.42 m, with a standard deviation of 0.16 m. The
inundation extent map and DEM quality are the two main
factors that affect the two approaches’ quality and
performance. For various remote sensing applications,
including flood mapping, accurate digital DEM is
indispensable. Deep learning has been proven to be efficient
for segmentation tasks and achieved promising results in
extracting flooded areas, reducing the issue of overestimation
or underestimating floodwater depths. Overall, using accurate
flood extent and DEM can improve the performance of flood
depth estimations. In addition, the estimated floodwater depth
values give additional information that can use for rescue and
damage assessment tasks.

Like the deep learning-based floodwater depth mapping
approach, the GFI-based inundation depth mapping approach
is highly affected by the quality and accuracy of DEM since the
algorithm primarily uses it as input. The pre-flood LiDAR data
was used to create DEM in this study for the implementation of
the both methods. However, unlike the deep learning method, the
GFI approach is unsuitable for estimating floodwater depth for a
small area. Because it requires studying an entire hydrographic
basin or subbasin to calculate the flow accumulation values
coherent with reality (Manfreda et al., 2019). For that purpose,
the DEM, slope, flow accumulation, and flow direction of the
whole basin or subbasin need to be created as input for any area
(small or large) floodwater depth estimation purposes based on
the GFI mapping method. Unless this method leads to a wrong
result, only if a portion of the basin or subbasin is used.

In contrast, the classification method can effectively estimate
floodwater depth for any area of interest (small or large area)
because these methods use the flood extent and DEM size equal to
the area of interest or the study area. This saves computational
time as well as issues related to data shortage. Using an accurate
flood extent map is vital to estimate the water level precisely.
Inaccurate flood extent extraction can lead to overestimating or
underestimating flood depths. Deep learning algorithms such as
CNN can automatically create inundation extent from the input
images based on training. The FCN-8s trained with Hurricane
Matthew (2018) images acquired in Lumberton in this study. The
network was tested with Hurricane Florence image obtained in
Princeville and achieved more than 98% accuracy.

The integrated method (method 1) seems providing better
performance in extracting and creating 3D flood map in
comparison with tradition methods such as thresholding
and active contour modeling (e.g., Matgen et al., 2007)
when the radar signal only gradually increases in the
transient shallow water zone between the flooded and the
non-flooded areas, and obtaining accurate and timely flood
segmentation remains subject to uncertainties. However, the
use of SAR data in the studies addressed the segmentation issue
in the flooded vegetation areas where the methods based on
optical data fail. Regarding the water depth estimation, the
integrated method seems being more straightforward
approach than traditional hydrodynamic-based models
(such as Wing et al., 2017) due to their dependency on
numerous model parameters and hydrological assumptions,

especially when a limited hydrological data are available for
mapping.

5 CONCLUSION

Flooding is a severe natural hazard that poses a significant
threat to human life and property worldwide. Generating an
inundation map during extreme flood events is vital for
planning and efficiently managing affected areas. This
research investigated the performance of deep learning-
based image analysis and GFI methods for inundation
mapping over the same study areas during the same
flooding events. The first method employed a FCN-8s to
create a flood extent map using UAV imagery and then,
overlaid and integrated the flood extent map with DEM to
estimate the floodwater depth. While, the second method only
applied the DEM of the study area to calculate the river basin
morphological features and estimate water level information
to delineate the flood boundaries and measure inundation
depth. The performance of the methods were evaluated using
the USGS gauge data as ground truth data. The flood water
depth RMSE calculated for the deep learning-based image
analysis and GFI are 0.26 and 0.39 m, respectively. While the
GFI approach is relatively simple to implement, it is
unsuitable for estimating floodwater depth for a small area.
Because it requires studying an entire hydrographic basin or
subbasin to calculate the flow accumulation values coherent
with reality. While, the deep learning-based image
classification method can be applied for flood mapping at
any scale. The results show that the high-resolution image
classification offer better estimation for floodwater mapping,
minimize the overestimation or underestimation of floods
and efficiently create a 3D flood extent map to support
emergency response and recovery activities during a
flood event.
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