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Accurate maps of biological communities are essential for monitoring and managing
marine protected areas but more information on the most effective methods for developing
these maps is needed. In this study, we use Wilsons Promontory Marine National Park in
southeast Australia as a case study to determine the best combination of variables and
scales for producing accurate habitat maps across the site. Wilsons Promontory has full
multibeam echosounder (MBES) coverage coupled with towed video, remotely operated
underwater vehicle (ROV) and drop video observations. Our study used an image
segmentation approach incorporating MBES backscatter angular response curve and
bathymetry derivatives to identify benthic community types using a hierarchical habitat
classification scheme. The angular response curve data were extracted from MBES data
using two different methods: 1) angular range analysis (ARA) and 2) backscatter angular
response (AR). Habitat distributions were predicted using a supervised Random Forest
approach combining bathymetry, ARA, and AR derivatives. Variable importance metrics
indicated that ARA derivatives, such as grain size, impedance and volume heterogeneity
were more important to model performance than AR derivatives mean, skewness, and
kurtosis. Additionally, this study investigated the impact of segmentation software settings
when creating segmented surfaces and their impact on overall model accuracy. We found
using fine scale segmentation resulted in the best model performance. These results
indicate the importance of incorporating backscatter derivatives into biological habitat
maps and the need to consider scale to increase the accuracy of the outputs to help
improve the spatial management of marine environments.

Keywords: backscatter, angular range analysis, habitat maps, multiscale analysis, image segementation,
hierachical classification scheme, bathymetry, multibeam

1 INTRODUCTION

Coastal regions support a wide range of human activity, such as commercial and recreational
fisheries, aquaculture, and resource extraction. These anthropogenic pressures often result in threats
to the local biodiversity and ecosystems. To successfully protect and conserve marine areas, more
information on geological and ecological characteristics are required (Brown et al., 2011). The
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production of habitat maps is a key decision-support tool for
conservation management and planning (Costello, 2009) but
requires detailed information regarding the physical
characteristics of the seafloor. Many studies have shown the
utility in data from multibeam echosounders (MBES),
including both bathymetry and backscatter, for producing
accurate and useful habitat maps (Lecours et al., 2017;
Lacharité et al., 2018; Fakiris et al., 2019).

Bathymetry provides information that has long been used to
delineate habitats due to its correlation with light attenuation,
which influences the distribution of habitat forming algal species
and their associated communities (Kendal et al., 2005; Ready
et al., 2010; Rees et al., 2014; MacDonald et al., 2016; Sen et al.,
2016). Derivatives from bathymetry, such as geomorphological
complexity, rugosity and slope, have also contributed to
understanding the distributions of sessile invertebrate (Kendal
et al., 2005), and macroalgal assemblages (Toohey et al., 2007). In
addition to the bathymetry information provided by MBES
systems, backscatter, which is the intensity of the acoustic
signal return used to infer seafloor geological and biological
characteristics, is also acquired and can be converted into
continuous mosaics.

Characterising the seafloor using backscatter requires more
parameters compared to bathymetric measurements, most
importantly target strength, and incident angle (Lurton et al.,
2015). Target strength is a description of how much acoustic
energy is redirected or scattered back to the echosounder with
rough surfaces scattering a greater portion of the acoustic signal
back to the receiver compared to smooth surfaces, which scatter
much less signal. The backscatter intensity is also impacted by the
incidence angle, with increasingly weaker returns as the incidence
angle increases (Lurton et al., 2015).

Previous studies have shown the usefulness of backscatter
derived mosaics for classifying biological communities such as
rhodolith and seagrass beds through unsupervised clustering
(Ryan et al., 2007; Hamilton and Parnum, 2011). However, to
create a backscatter mosaic, the angular response must be
removed, resulting in omission of useful data. Angular
backscatter intensity, or backscatter angular response (AR),
can be processed (or extracted) to investigate in detail the
backscatter intensity as a function of incidence angle, scattered
from the seafloor surfaces (Lurton et al., 2015) under the
assumption of a homogenous seabed. From the backscatter
response curve further variables such as the mean, slope,
kurtosis and skewness of the curves can be derived and used
as variables for the classification process as in Che Hasan et al.
(2012). Combining bathymetric and backscatter AR derivatives
often results in more accurate habitat classifications, compared to
bathymetric derivatives alone (Che Hasan et al., 2012; Sen et al.,
2016) and the inclusion of AR derivatives with bathymetry and
backscatter derivatives can increase overall map accuracy up to
5% according to previous studies (Che Hasan et al., 2012, 2014;
Fakiris et al., 2019).

The above process differs from angular range analysis (ARA)
approach, which uses a geo-acoustic inversion model to predict
sediment classes (Fonseca andMayer, 2007). ARA attempts to use
the angular backscatter intensity information to estimate type of

sediment as well as other sediment properties, such as the
sediment grain size, index of impedance and volume
heterogeneity (Mulhearn, 2000; Fonseca et al., 2009). These
inversion parameters are useful for identifying differences in
the seafloor that can be attributed to variations in features and
biological habitats (Brown and Blondel, 2009; Che Hasan et al.,
2014; Lecours et al., 2016a). However, there are no studies that
assess the importance of combined AR and ARA mosaics on
classification accuracy.

Incorporating AR derivatives (mean, slope, kurtosis, and
skewness) and ARA inversion parameters (sediment grain size,
index of impedance, and volume heterogeneity) in a classification
with high resolution bathymetry and backscatter mosaics is
challenging due to the mismatch of spatial resolution (Fonseca
et al., 2009; Che Hasan et al., 2012). Both AR and ARA are “half-
swath time-series” data that require uninterrupted time-series for
the port and starboard swaths, with swath width increasing as
depth increases (Schimel et al., 2018). Considering this
requirement, one assumption when processing AR and ARA is
that the seafloor is homogenous at the scale of the swath and areas
where the seafloor is heterogeneous results in less reliable outputs
(Clarke et al., 1997; Fonseca et al., 2009; Che Hasan et al., 2012).
Additionally, the resulting derivative mosaics, such as grain size,
are spatially limited to the cross track length of the port, and
starboard swaths (Fonseca et al., 2009). Although challenging to
incorporate into habitat classifiers, adding AR and ARA into
benthic habitat classification has been shown to improve
classification prediction accuracy despite the cost of coarser
spatial resolution (Clarke, 1994; Clarke et al., 1997; Lamarche
et al., 2011; Che Hasan et al., 2012).

ARA is limited if substrate properties change part way across
the swath and as a result is difficult to integrate into high
resolution habitat maps. One promising method for
incorporating AR derivatives and ARA inversion parameters
into higher resolution habitat maps is by extracting this
information from homogeneous regions or segments. The goal
of segmentation is to separate the study area into multiple varying
sized objects based on spectral and spatial characteristics (Diesing
et al., 2014). This process can be achieved by performing spatial
segmentation of the corrected bathymetric (spatial) and
backscatter (spectral) mosaics. Using segmented polygons
created from the bathymetric and backscatter surfaces to
create segmented mosaics of ARA curves identifies spatial
differences in seafloor properties that may be difficult to
derive from the ARA curves alone. Image segmentation has
the added benefit of reducing the impact of MBES backscatter
artefacts on model predictions by smoothing outliers present in
the mosaic within homogeneous objects (Lecours et al., 2017).

Artefacts in MBES bathymetry and backscatter datasets are
common, and may result from MBES installation, sea state, and
user input. These artefacts can be further reduced at the pixel level
by varying the analytical scale (kernel size) when generating
derivative surfaces. By increasing the analytical scale, artefacts
are smoothed due to the influence of nearby records (MacMillan
and Shary, 2009). In addition to reducing artefacts within aMBES
dataset, analytical scale can have an impact on model
performance as demonstrated by Wilson et al. (2007) who
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found that a single fixed analytical scale cannot capture all
features of interest and as a result may impact model
performance. Including derivatives at multiple analytical scales
has been demonstrated to increase model performance (Wilson
et al., 2007; Porskamp et al., 2018). Using multiple analytical

scales allows for the derivative surfaces that best capture the
variability in the environment to be used in classifying
predetermined habitat classes (Wilson et al., 2007).

We explore methods for including multibeam bathymetry and
backscatter derivatives, ARA inversion parameters and AR

FIGURE 1 | Map of Wilsons Promontory Marine National Park bathymetry coverage, Victoria, Australia. Video groundtruthing sites are plotted, with gray
representing drop video samples, green ROV samples, purple representing AUV samples and black towed video samples. The purple box represents the extents from
Figures 4, 5.
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derivatives, using image segmentation along with multiscale
environmental derivatives as variables in a Random Forest
(RF) classifier. For each classification hierarchy explored in
this study we evaluate:

1) How the inclusion of ARA inversion parameters and AR
derivatives influences habitat classification models by
assessing variable importance through mean decrease in
accuracy, and

2) How image segmentation approaches influence overall model
accuracies at varying scales.

Ultimately, this study aims to determine the most effective
methods for accurately classifying marine habitats to aid in
marine spatial management, including the management of
marine protected areas.

2 METHODOLOGY

2.1 Study Site
The study site is located at Wilsons Promontory Marine National
Park (MNP) in the temperate coastal zone of Victoria, south-
eastern Australia (Figure 1). Wilsons Promontory Marine
National Park was designated in 2002 and is the largest
marine national park in Victoria. Recreational fishing,
commercial fishing, or any activities that disturb the seafloor
are not permitted within the park. It is classified under the
International Union for Conservation of Nature and Natural
Resources (IUCN) category II, which means it protects a
functioning ecosystem, and supports education and recreation.

The Park is characterised by a coastal granitic reef with areas of
complex sand dunes further from shore. In addition, there are
several deep (up to 90 m) nearshore scoured depressions.
Wilson’s Promontory MNP supports high biodiversity
(Edmunds et al., 2012) with 180 fish, 404 molluscs, 191
crustaceans, and 1,633 plants/algae species (Parks, 2017).
Biodiversity is likely high due to the seasonal convergence of
the East Australian and South Australian currents (Kennedy et al.,
2014). High energy shallow rocky reefs are dominated by fucoid
macroalgae, primarily Phyllospora comosa. Deeper reefs to the
south of the park are largely dominated by sessile invertebrate
communities.

2.2 MBES Collection and Processing
Bathymetry and backscatter were collected using a multibeam
echosounder (Kongsberg EM 2040C) aboard the research vessel
MV Yolla at a frequency of 300 kHz with an automated ping and
fixed pulse rate dependent on survey conditions. Differential GPS
positions were post-processed using POSPac MMS. Bathymetry
data were processed with CARIS HIPS and SIPS (v8.1A). The
backscatter mosaic was processed with FMGT (v.7.4.1) to correct
for source level, absorption and spreading losses, and insonified
areas. To remove the angular effect, we used a trend Angular
Varying Gain (AVG) correction using angular interval of 20 ° to
60 ° within 300 window sizes. All soundings were processed
manually at 1 m resolution and corrected to the Australian height

datum (AHD). Bathymetry and backscatter derivatives were
generated at kernel sizes ranging from 3 × 3 to 201 × 201
pixels resulting in products at analysis scales of 3, 5, 7, 9, 11,
21, 51, 101, 201 m. The kernel sizes used in this study were
selected following methods from Porskamp et al., 2018, with
additional larger kernel sizes (i.e. 51, 101, and 201) to test if there
were upper limits to which kernel sizes performed best. ArcGIS
Pro (ArcGIS, 2020) was used was used for all kernel analysis
through the focal statistics tool.

2.3 Segmentation
Image segmentation partitions the surface into continuous
regions that share similar attributes (Blaschke, 2010). Our
study used ENVI FX (ENVI, 2020) to perform Image
segmentation on the FMGT (FMGT, 2020) backscatter mosaic
and CARIS (CARIS, 2017) bathymetry digital elevation model
(DEM). ENVI FX uses a hybrid segmentation method that
combines region-growing and edge-based methods (Chen
et al., 2018). The scale parameter is defined as the percentage
of the normalized cumulative distribution of the pixel values in
the gradient or intensity image (Kucharczyk et al., 2020). For
example, a scale parameter of 10 indicates that the region growing
would start with the lowest 10 percent of pixel values, essentially a
minimum parameter for initial regions. After the initial regions
are created, adjacent regions are merged based on their similarity
of brightness, texture and colour. Selection of scale parameters
were guided by previous studies that used image segmentation for
benthic habitat map segmentation (Adger, 1997). To determine if
scale selection in image segmentation influences overall model
accuracy, our study used a scale parameter of 15 (fine scale: 4,531
objects), 30 (medium scale: 2,586) and 45 (broad scale: 1,608
objects).

2.4 AR and ARA Creation
To prepare for AR derivatives, first, the raw backscatter *.all files
were processed using CMST-GAMB Process v17.05.07 (Gavrilov
and Parsons, 2014) which converted the raw backscatter valuesto
backscatter intensity values presented as a function of incidence
angle (i.e. angular response) in MATLAB format over 5
consecutive pings. Secondly, a custom MATLAB script
(v2018b) (Che Hasan et al., 2014) was used to extract the AR
derivatives mean, slope, kurtosis and skewness for each
segmented polygon, as discussed above. This tool outputs each
AR derivative as a mosaic, which were gridded at a resolution
of 1 m.

ARA curves were calculated and corrected using FMGT and
converted into continuous raster mosaics, as a function of
incident angle over five consecutive pings, with the port and
starboard curves calculated separately. The study area ranges in
depth from 2 to 90 m, using 5 pings and resulting in a footprint of
1.85 m for the deepest areas of the park and 0.5 m in the
shallowest areas of the park. A geophysical model (Jackson
et al., 1986) is fitted to these curves in FMGT, which produces
estimates of the following parameters impedance, grain size, and
volume heterogeneity (Fonseca et al., 2002; Fonseca and Mayer,
2007). Impedance is defined as the ratio between acoustic
pressure and the velocity of the soundwave, indicating
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“hardness” of the seafloor (Fonseca et al., 2009; Hou et al., 2018)
and grain size represents sediment grain size measured in
millimetres (Manik and Jaya, 2016). As the present study did
not extend to sediment analysis, raw grain size values are used as a
relative comparison between grain sizes. Volume heterogeneity
provides information on density and porosity of the sediment
(Jackson and Briggs, 1992). To reduce the impact of “swath
resolution” and possible artefacts from sediment type changing
mid swath, the ARA derivatives central tendencies (mean, and
standard deviation) were calculated for each segment. All output
raster mosaics were re-gridded at a scale of 1 m to match all
derivatives. A summary of all derivatives can be found in Table 1.
One limitation to the ARA approach is that the models are for
unconsolidated sediments. Therefore, impedance and grain size
for gravel and rock come out as the same from the ARA inversion.
As a result, sites with large areas of bedrock or gravel may find
ARA derivatives grain size, impedance and volume less important
in the RF model. The Jackson model (Jackson et al., 1986)
specifies that the classifications are only applicable for sonar
systems between 10 and 100 kHz; however, previous studies have
shown (Jackson and Ivakin, 1998) that roughness and volume
parameters essentially have no frequency dependence. Due to the
limitations of this method and our lack of sediment samples at
this site, which would be necessary to groundtruth classifications,
we used ARA as a measure of relative grain size and the
heterogeneity of the sediment. These parameters are helpful
when defining biological habitat.

2.5 Groundtruth Collection and
Classification
We compiled all available seabed observations across the park
to inform the habitat mapping process. Video observations
were collected between 2013 and 2016: 85 drop video samples
collected in 2014, 41 ROV video samples collected in 2013, 7
AUV flights collected in 2016 and 7 towed video transects
collected in 2016. Video was classified using the Combined
Biotope Classification Scheme (CBiCS) (Edmunds and Flynn,
2015), which has been adopted by the Victorian Department of
Environment, Land, Water and Planning. Video observations
were classified into categories according to six of the CBiCS
hierarchical levels. Three hierarchical levels of the scheme;
broad habitat classes (BC2), habitat complexes (BC3), and
biotope complexes (BC4) were used in the present study
(Table 2). In order to limit spatial autocorrelation in the
groundtruth data, each groundtruth source was split into
point observations (i.e., continuous towed video transects
were separated into points, each with latitude, longitude
and class). Variograms for each CBiCS class were created in
R v3.6.1 following methods by Lyons et al., 2018 to determine
the minimum distance between all points to reduce spatial
autocorrelation. The groundtruth dataset was then stratified by
class and randomly subset with a minimum distance of 35 m to
reduce the spatial autocorrelation. To limit the impact of rare
classes on model accuracy any classes with less than 25
observations were excluded (Table 2).

TABLE 1 | List of bathymetry and backscatter derivatives and their respective equations.

Derivative Description Software

Bathymetry Mean Local mean value of pixel to neighbourhooda ArcGIS Pro v2.2
Bathymetry Standard
Deviation

Local standard deviation value of pixel to neighbourhooda ArcGIS Pro v2.2

Backscatter Mean Local mean value of pixel to neighbourhooda FMGT 7.4.1
Backscatter Standard
Deviation

Local standard deviation value of pixel to neighbourhooda ArcGIS Pro v2.2

Bathymetry Rugosity (VRM) Incorporates the heterogeneity of both slope and aspect using three-dimensional dispersion of vectors.
See (Sappington et al., 2007) for more details

ArcGIS Pro v2.2

Bathymetry Slope Change in elevation over designated neighbourhood sizea ArcGIS Pro v2.2
Bathymetry Complexity Rate of change of slope over designated neighbourhood sizea ArcGIS Pro v2.2
Maximum Curvature Steepest curve of convexity for a pixel over designated neighbourhood sizea ArcGIS Pro v2.2v2.2
ARA Impedance The ratio between acoustic pressure and the velocity of the soundwave. Computed using the Jackson

Model (Jackson et al., 1986)
FMGT 7.4.1

ARA Volume Provides information on the density and porosity of the sediment. Computed bymultiplying the difference in
height of a cell times the area of each cell. All volume calculations are relative to zero (Jackson et al., 1986)

FMGT 7.4.1

ARA grain size Computed grain size from FMGT proprietary model FMGT 7.4.1
Eastness The sine of the angle of slope in the analysis windowa ArcGIS Pro v2.2v2.2
Northness The cosine of the angle of slope in the analysis windowa ArcGIS Pro v2.2v2.2
AR Mean Overall mean values form the angular response curves per segment. See (Che Hasan et al., 2014) for more

details
CMST-GA MB Process
v17.05.07

AR skewness Degree of bias of the roughness shape. See (Che Hasan et al., 2014) for more details CMST-GA MB Process
v17.05.07

AR Slope Least square slope of angular response curve. See (Che Hasan et al., 2014) for more details CMST-GA MB Process
v17.05.07

AR Kurtosis Measure of roughness along the angular response curve averaged per segment. See (Che Hasan et al.,
2014) for more details

CMST-GA MB Process
v17.05.07

aSee review by Lecours et al., 2017.

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 9031335

Porskamp et al. Angular Response in Habitat Mapping

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


2.6 Statistical Approaches
2.6.1 Modeling
A random forests (RF) approach was used to derive rule-based
relationships between geophysical derivatives and observational
data using the “randomForest” package in R (Liaw and Wiener,
2002). The RF classification approach reduces overfitting by
including the results of multiple trees from iterative bootstrap
samples (Cutler et al., 2007). RF reduces bias via random selection
of variables. Stephens and Diesing (2014) show that tree-based
methods, particularly RF, resulted in more accurate classifications

than competing methods when predicting sediment classes. For a
workflow flowchart see Figure 2.

Model parameters mtry (i.e., amount of variables to sample at
each split) and ntree (i.e., number of trees, aiming for the
minimum number to stabilize the error) were determined
using model optimization procedures in the ‘caret’ package
from R (Kuhn, 2020), and set to 11 and 300 respectively for
all fine segmentation models. Variable importance for each RF
model was determined by using mean decrease in accuracy. Mean
decrease in accuracy is calculated by using the out-of-bag error

TABLE 2 | Combined Biotope Classification Scheme (CBiCS) hierarchies (BC2, BC3, BC4) used to train and validate the three hierarchical models in the present study.
Number of observed classes from groundtruth data (italicized) for each level class.

BC2 BC3 BC4

Infralittoral rock and other hard
substrata (IR) 118

High energy infralittoral rock (HIR) 118 High energy Ecklonia-Phyllospora comosa communities (EP) 85
High energy lower infralittoral zone 21
High energy Ecklonia communities 12

Circalittoral rock and other hard
substrata (CR) 263

High energy open coast circalittoral
rock (HCR) 263

High energy circalittoral rock with bushy branching and low erect sponges (HCB) 118
Moderate to high complexity circalittoral rock with covering of small colonies and well-
spaced erect sponges (MCS) 32
BC4: Sandy low profile reef wave surge communities (SLP) 34
BC5: Provisional southern Wilsons Promontory erect sponges, covering sponges, sea
plume complex 79

Sublittoral sediment (SS) 561 Sublittoral coarse sediment (SCS) 51 Circalittoral coarse sediment (CCs) 51
Sublittoral mixed sediments (SMx) 326 Circalittoral mixed sediments (CMs) 326
Sublittoral sand and muddy sand
(SSa) 184

Sublittoral fine sand (SSfa) 184

Excluded classes Ecklonia radiata assemblages on moderate energy rock 2
Erect octocorals on sediment 1
High energy circalittoral reef with Bushy and hard bryozoans, sparse sponges, and
bramble gorgonian Acabaria 3
High energy circalittoral rock with seabed covering sponges 1
High energy Phyllospora 2
Sessile invertebrate clumps on circalittoral biogenic gravel 1

FIGURE 2 | Flowchart depicting analysis options for Bathymetry, backscatter AR and ARA.
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(prediction error utilizing bootstrap aggregating) for each tree for
each variable. The differences between each variable are then
averaged over all trees (Han et al., 2016). The higher the mean

decrease in accuracy the more important the variable is to the
model. Many studies demonstrate the benefits of permutating
variable importance, however these studies are typically focused
on the field of genomics; running simulated studies with as little
as 5 predictor variables that are highly correlated, and primarily
categorical (Strobl et al., 2007; Nicodemus et al., 2010). Running
high dimensional (162 variables) large observational (708)
models over multiple permutations is computationally
intensive (Degenhardt et al., 2017), therefore we did not
average variable importance over multiple permutations.
Predictors from this study were assessed using Pearson
product-moment correlation (Figure 3). Any predictor
variables with a correlation value greater than 0.8 or smaller
than 0.8 were assessed by variable importance, with the lowest
ranking variable being removed, reducing the correlation below
the threshold for the retained variable (retained variables are
shown in Table 3). Correlated variables within the model can lead
to large variances when small changes within the collated
variables occur, which is why it is best practice to remove
correlated variables (Ohlemüller et al., 2008). For more details
on variable importance refer to Porskamp et al., 2018. The same
predictor variables were selected for the three segmentation sizes,
broad, medium and fine, to allow comparisons across
segmentation scales.

2.6.2 Predictive Mapping
Classified habitat maps were created using the “ModelMap” package
in R (Freeman and Frescino, 2009). Model accuracies were

FIGURE 3 | Pearson product-moment correlation plots for fine
segmentation. See variable code names in Table 3.

TABLE 3 | Model predictors and spatial scale retained for fine segmentation.

Model Derivatives Kernel size Variable code

BC2 Bathymetry Rugosity (VRM) 9 Bathy_VRM_009
Impedance Mean 7 Imp_mn_007
Bathymetry Mean 9 Bathy_mn_009
Volume Mean 21 Vol_mn_021
Eastness 9 East_009
Northness 9 North_009
Volume Standard Deviation 11 Vol_sd_011
Maximum Curvature 201 Cur_201
ABI Skewness - ABI_Skew

BC3 Bathymetry mean 101 Bathy_mn_101
Impedance Mean 3 Imp_mn_003
Bathymetry Standard Deviation 5 Bathy_sd_005
Volume Standard Deviation 5 Vol_sd_005
Volume Mean 201 Vol_mn_201
Eastness 101 East_101
Northness 201 North_201
Backscatter Rugosity (VRM) 201 Back_VRM_201
Grain size Standard Deviation 201 Grain_sd_201
Maximum Curvature 101 Cur_101
ABI Slope - ABI_Slope

BC4 Grain size Mean 51 Grain_mn_051
Volume Standard Deviation 101 Vol_sd_101
Bathymetry Mean 3 Bathy_mn_003
Volume Mean 51 Vol_mn_051
Eastness 3 East_003
Northness 201 North_201
ABI Skewness — ABI_Skew
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determined following Lyons et al. (2018) methods, which randomly
splits groundtruth data into training and validation samples. This
process is repeated 500 times and the mean and variance of the error
metrics are used as an indication of map confidence.

2.6.3 One-Way ANOVA
To determine differences between image segmentation scales,
overall model accuracies were used. For each image segmentation
scale, RF models were run 500 times, each time with a different
training and validation dataset for a total of 1,500 overall
accuracies. This resulted in three groups, fine, medium and
broad, each with 500 overall accuracy values. To test if there
was a significant difference between the three groups, we applied a
one-way analysis of variance (ANOVA) with an α value of 0.05.

3 RESULTS

3.1 Image Segmentation Results
Overall, the three image segmentations createsimilar objects
within the backscatter mosaic (Figure 4). Comparing the three
different segmentation scales, broad medium and fine, reveals
that overall model accuracy is within 1% of each scale (Table 4).
The overall accuracy medians for BC3 and BC4 were
approximately 10% less than BC2. Standard deviation is low
across the tested segmentations. There was a significant difference
between model means as determined by one-way ANOVA (F (2,
1,497) = 17.21, p < 0.001).

3.2 ARA Derivative Results
Most of the site was circalittoral fine sand at the BC4 level
followed by sandy low-profile reef wave surge communities.
Example outputs form continuous unsegmented ARA
derivatives; impedance, volume, and grain size (Figure 5).

To demonstrate class separability, mean angular response curves
were generated for BC2, and BC4 based on groundtruth
observations (Figure 6). A figure was not generated for BC3
because the curves were similar to BC2. Both circalittoral rock
(CR) and infralittoral rock (IR) BC2 classes have similar angular
response curves with CR slightly higher than IR (Figure 6A). The
differences between CR and IR decrease as incidence angle increases.
Differences between these two classes could be driven by depth
differences between the two classes. Sublittoral sediment (SS) shows
good separation from both IR andCR as it starts the highest dB value
and ends at the lowest for the three classes (Figure 6A).

FIGURE 4 | Image segmentation examples showing differences between fine (4,531) medium (2,486) and broad (1,608) over the backscatter mosaic. The CBiCS
classification from the biotope complex (BC4) classification is also included as categorized points to show how the different backscatter intensities reflect the differences
in those classes over sediment habitats.

TABLE 4 | Overall mean and standard deviations for the three segment sizes
tested.

Number of segments 1,608 (broad) 2,486 (medium) 4,531 (fine)

BC2
Median 79.2 79.1 80.09
Standard Deviation 0.04 0.04 0.03

BC3
Median 69.8 69.4 70.12
Standard Deviation 0.05 0.05 0.04

BC4
Median 66.4 66.7 67.4
Standard Deviation 0.05 0.02 0.01

Frontiers in Remote Sensing | www.frontiersin.org May 2022 | Volume 3 | Article 9031338

Porskamp et al. Angular Response in Habitat Mapping

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


Sublittoral fine sand (SSfa) BC4 class was the most different of
the seven classes starting lower than all classes with a fairly
consistent drop off for both near and outer incidence angles
(Figure 6B). High energy Ecklonia-Phyllospora comosa
communities (EP) shows the strongest discrimination
characteristic from 0 to 30°. Although Ecklonia-Phyllospora
comosa communities are found on consolidated substrate, the
presence of dense algae could be a possible cause for near beams

(0–30°) to have such low intensities. Circalittoral mixed
sediments (CMs), circalittoral coarse sediments (CCS),
moderate to high complexity circalittoral rock with covering of
small colonies and well-spaced erect sponges (MCS) and sandy
low profile reef wave surge communities (SLP) show the most
separation between 0 and 15° with the outer beams having similar
intensities (Figure 6B). High energy circalittoral rock with bushy
branching and low erect sponges (HCB) has the strongest

FIGURE 5 | Example surfaces for the ARA derivatives Grain size, Impedance, and Volume with groundtruth points coloured by category. Top row are ARA
derivatives post segmentation, bottom row are ARA derivatives pre segmentation.
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discrimination in the near beams (0–20°). BC2 classes were more
disguisable than BC4 classes, which is likely due to BC2 class
separation focused on substratum while BC4 classes are separated
by biological communities.

3.3 Habitat Classification Maps
The habitat classification map for BC2 shows that “sublittoral
sediments” dominate the Wilsons Promontory site, while
“circalittoral rock” and “infralittoral rock” are found fringing
along the granitic headlands and islands (Figure 7). The BC3
classification map is similar to BC2, but the sublittoral sediment
classes are further split into “sublittoral mixed sediments” and
“sublittoral sand and muddy sand”.

The smallest class by area for BC4 was “circalittoral coarse
sediment”, found in the southwestern section of the study site at a
mean depth of 45 ± 9 m. The next smallest class by area is
“moderate to high complexity circalittoral rock with covering of
small colonies and well-spaced erect sponges” and is found
primarily in the west near shore with a mean depth of 45 ±
7 m “Circalittoral fine sand” is the largest class by area and is
distributed primarily in the east and south of the site with patches
in the west. “Circalittoral fine sand” has amean depth of 44 ± 7 m.
The next largest class by area is “circalittoral mixed sediments”,
which are found deeper than “circalittoral fine sand” with a mean
of 49 ± 8 m “Circalittoral mixed sediments” are found throughout
the western section of Wilsons Promontory with patches near the
headlands in the south. The biotope complex “high energy
circalittoral rock with bushy branching and low erect sponges”
are found at a mean depth of 58 ± 14 m with the majority located
just south of the headlands. “High energy Ecklonia-Phyllospora
communities” are present along the coastline and fringing off the
Southwestern Islands at a mean depth of 27 ± 8 m. The final class,
“sandy low-profile reef wave surge communities”, is scattered
within “circalittoral mixed sediments” with a mean depth of 48 ±
9 m. Overall model accuracies and class accuracies for BC2, BC3
and BC4 can be found in Supplementary Tables S1, S2, S3
respectively.

3.4 Variable Importance Comparisons
Variable importance plots for the fine scale segmentation model
are shown in Figure 8. Bathymetry VRM exhibited the greatest
mean decrease in accuracy for hierarchy BC2, while Bathymetry
mean, and grain size mean were greatest for BC3 and BC4
respectively. The ARA derivatives volume, impedance and
grain size had consistently higher mean decrease in accuracy
values over other variables, such as backscatter mean, backscatter
standard deviation, slope, and curvature. The AR derivative
skewness was ranked lowest for hierarchy BC2 and BC4, while
AR slope ranked lowest for BC3.

For medium scale segmentation, impedance mean exhibited
the greatest mean decrease in accuracy for hierarchy BC2 and
BC3, and grain size mean was greatest for BC4 (Figure 9). The
ARA derivatives volume, impedance and grain size had
consistently higher mean decrease in accuracy values over
other variables, such as backscatter mean, backscatter standard
deviation, slope, curvature, eastness and northness. The AR
derivative kurtosis was ranked lowest for hierarchy BC3, while
curvature was ranked lowest for BC2 and BC4 (Figure 9).

For broad scale segmentation bathymetry mean exhibited the
greatest mean decrease in accuracy for hierarchy BC2 and BC4,
and complexity was greatest for BC3 (Figure 10). Unlike the fine
and medium scale segmentation models impedance and grain
size mean had lower importance than broad scale segmentation
models. The AR derivative kurtosis was ranked lowest for
hierarchy BC3, while curvature was ranked lowest for BC2.
The lowest ranking derivative for BC4 was AR slope.

4 DISCUSSION

Benthic habitat mapping provides important decision-support tools
for spatial management of marine resources and associated species
diversity. Quantifying and improving map accuracy increases
certainty for decision makers. Compared to terrestrial studies,
marine studies are often limited in the information available to

FIGURE 6 | Mean angular response curves from groundtruth observations for BC2 classes (A) and BC4 classes (B). See Table 2 for full class names.
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classify habitats, which has, in part, driven the development of new
technologies and methods used to improve accuracy of habitat
classification (Fakiris et al., 2019). This study builds on previous
work conducted by Che Hasan et al., 2014; Fonseca et al. (2009) and
is the first to include ARA derivatives grain size, impedance and
volumewith contemporary environmental variables into a RFmodel
to classify biotic communities. These combinations of variables were
incorporated into nine RF models to classify habitats at three

hierarchical scales: broad habitats, habitat complexes and biotic
complexes, and using three levels of segmentation. The results of
this study directly compare the importance of environmental
variables that best describe habitat distribution within Wilsons
Promontory Marine National Park. Additionally, this study
demonstrated that methods for creating segmented surfaces using
image segmentation affect overall model accuracy, indicating the
importance of testing and developing methods for optimising the

FIGURE 7 |Habitat classification maps across CBiCS hierarchies for fine segmentation. (A) habitat map for BC2, (B) habitat map for BC3, (C) habitat map for BC4.
Created using ModelMap in R. Fine image segmentation used for final habitat maps.
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FIGURE 8 | Retained model variable importance for fine-scale segmentation. The higher mean decrease accuracy the more important the variable is for the model.

FIGURE 9 | Retained model variable importance for medium scale segmentation. The higher mean decrease accuracy the more important the variable is for
the model.

FIGURE 10 | Retained model variables for broad scale segmentation. The higher mean decrease accuracy the more important the variable is for the model.
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number of segments that produce the most accurate habitat
classification maps.

4.1 Impact of Variables
Across the models, ARA derivatives ranked high for variable
importance, whereas AR derivatives ranked lowest for six of the
nine models. The inversion parameters from ARA, volume
heterogeneity, grain size, and impedance were more important
to all nine models than values from backscatter mean, backscatter
standard deviation and backscatter VRM. In some cases,
backscatter derivatives and ARA inversion parameters were
correlated with one another, but in all cases the ARA
derivatives were more important. These results support the
hypothesis by Fonseca et al. (2009), which found that ARA
inversion parameters modelled from MBES observation
correlated well with substrate photos and would likely aid in
discrimination and delineation of benthic habitat maps.

The utility of both ARA inversion parameters and AR derivatives
at Wilsons Promontory is probably due to the dominance of
sediment classes at this site. ARA and AR derivatives are
particularly good at separating sediment classes (Hamilton and
Parnum, 2011; Rzhanov et al., 2012; Huang et al., 2013; Zhi
et al., 2014; Daniell et al., 2015; Siwabessy et al., 2017). This
ability to delineate sediment using ARA derivative properties
likely resulted in the higher ranking of ARA derivatives. Previous
studies have explored how ARA derivatives impact model
performance through separating geological classes (Fonseca et al.,
2009; Rzhanov et al., 2012) as well as AR derivatives (Huang et al.,
2013; Che Hasan et al., 2014; Daniell et al., 2015; Siwabessy et al.,
2017) but none have compared variable importance between both
methods of including angular response data.

Each of the ARA derivatives, grain size, impedance, and volume
heterogeneity, had varying effects on the classifications across the
hierarchical scheme. These ARA derivatives have had limited
application in habitat classification studies due to difficulty
incorporating with high resolution bathymetry and backscatter
datasets because of the mismatch in spatial resolution (Fonseca
et al., 2009; Che Hasan et al., 2012). To incorporate ARA derivatives
with contemporary environmental variables, the derivatives must be
segmented, which may reduce the overall resolution of the habitat
classification map. However, these derivatives describe and delineate
sediment physically (Fonseca et al., 2009; Hamilton and Parnum,
2011; Rzhanov et al., 2012; Che Hasan et al., 2014) and because
sediment influences the distribution of biotic communities (Ryan
et al., 2007; McBreen et al., 2008), could explain why grain size,
impedance and volume rank highly among the biological
classification scheme. Relative grain size was a variable of high
importance for both the BC3 and BC4 classifications, probably
due to grain size often driving the distribution of those biotic
communities associated with sediment (Seiderer and Newell,
1999; McBreen et al., 2008). Grain size is also the primary factor
used in the hierarchy to define the classes in the groundtruthing
datasets—so this would be expected. Impedance is found to be
influential in delineating classes in BC2 and BC3, which are
primarily defined by geological features, such as sediment versus
rock. Although ranked lower than impedance and grain size, volume
mean, and volume standard deviation are present in eachmodel and

in each hierarchy. Fonseca et al. (2009) hypothesized that volume
homogeneity would be useful for delineation of benthic habitatmaps
and our study supports this hypothesis. Volume is a measure of
sediment “heterogeneity” and is an important variable for identifying
changes in sediment types (Fonseca et al., 2009).

ARA derivatives outranked many contemporary environmental
variables such as slope, eastness, northness, complexity, backscatter
and, most notably, bathymetry. Slope, eastness, northness, and
complexity represent various degrees of complexity in the seafloor
(Lecours et al., 2016b).Wilson’s Promontory has low variability in the
seafloor for the majority of the site with areas of high complexity
associatedwith the extension of granitic headlands, outcrops and high
current areas where sediment waves were observed only making up a
small area of the park (see Kennedy et al., 2014). The lower coverage
of high complexity substrates likely caused the lower importance of
those variables associated with complexity compared to ARA
derivatives. Previous studies that use MBES data to classify
seafloor habitat have typically found bathymetry (depth) to be the
highest ranking variable in terms of importance (Che Hasan et al.,
2014; Rattray et al., 2015; Lecours et al., 2016a; Ierodiaconou et al.,
2018). Since our site is dominated by granitic reefs it is important to
note that the transition of the granitic reefs is relatively steep and can
cause issues with lack of observations across the depth range. In this
study ARA derivatives grain size and impedance contributed to
differentiating the classes specified, resulting in high mean
decrease in accuracy values. A possible explanation for ARA
derivatives’ high importance is likely due to Wilsons Promontory
being dominated by sediment communities (91% coverage) with
fringing “reef” based communities covering the remaining area (9%
coverage). CBiCS reef-based classes are frequently delineated by the
macroalgae and sessile invertebrate communities with their
distributions influenced by the amount of light they receive,
unlike sediment-based classes. Daniell et al. (2015) demonstrated
that AR curves can be used to identify hard, soft and, most relevant to
benthic habitat delineation, mixed substrate types. To determine
ARA’s effectiveness at delineating mixed substrate types and reef
communities’ future studies should explore ARA derivatives
importance at sites with higher diversity of reef-based communities.

4.2 Hierarchical Comparison
As the number of classes increases among the hierarchy, overall
model accuracy decreases, which has been previously demonstrated
using RFmodels (Bernard et al., 2009;Wilson et al., 2007; Porskamp
et al., 2018). As the hierarchy becomes more complex (increased
number of classes) more rare classes with fewer observations are
included that reduce the ability of the models to accurately predict
rare classes (Hernandez et al., 2006). To reduce this effect, we
excluded any classes with less than 25 observations. A reduction
inmodel accuracy with the introduction or rare classes is a limitation
observed in other classification schemes such as EUNIS (Galparsoro
et al., 2012). The roughly 10% drop in accuracy from BC2 to BC3
was much larger than BC3 to BC4 (3%) and is likely due to class
delineation in BC2 driven primarily by geologic features and the
fewer number of classes in BC2. Both BC3 and BC4 have multiple
classes over the same substrate type, and therefore have closer overall
accuracies. One method to reduce the impact of classes with few
observations influencing overall model accuracy at each hierarchy is
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planning groundtruthing surveys to focus on capturing as many
biotic communities as possible through more representative and
balanced sampling to reduce the number of repetitions over the same
substrate type (Daniell et al., 2015; Foster et al., 2018). However, even
better planned groundtruthing surveys may not capture truly rare
classes that have a small spatial footprint resulting in these classes
being excluded from the classification. Often, we are in a position
where groundtruthing is combined from several different sources,
basically discovery surveys rather than part of a long-term
monitoring program. Removing rare classes that are a key
interest for management bodies is not an ideal solution, however
there are alternative statistical methods for including rare classes
such as using a balanced random forest design (Chen et al., 2004;
Diesing, 2020) or by using a Synthetic Minority Over-sampling
Technique (Chawla et al., 2002). These methods should be explored
in future studies to increase the ability to retain rare classes in
random forest models. Products used in the classification process are
useful in informing future sampling strategies such as spatially
balanced designs. Additionally, future studies should investigate
using a nested approach when modeling across multiple
hierarchies to preserve shared classifications across models.

4.3 Segmentation Comparison
When comparing model accuracies across the various
segmentation sizes, there was a significant difference between
fine, medium, and broad image segmentation scales. Previous
studies have noted differences in model performance between
segmentation software and methods (Chen, 2008; Clinton et al.,
2010; Montereale Gavazzi et al., 2016; Liu et al., 2017) but did not
test scale effects within the same software and their impact on
model performance. When extracting features using image
segmentation software, in our case ENVI, care should be taken
in the selection of merging and edge detecting values as they can
affect the overall model accuracy. This study found that using a
low merge value (e.g., fine segmentation) resulted in the best
overall model accuracy (Table 4). Due to the size of Wilsons
Promontory, we were limited in how many segments could be
created and processed in a reasonable time. Although our results
were statistically significant, a 1% difference between
segmentation scales may not be warranted for all future
studies. Future research should test additional merge settings
to determine at what merge settings model accuracy is highest
and beyond which accuracies do not improve. Segmentation scale
is likely driven by site characteristics and thus should be tested
whenever using an image segmentation approach. One limitation
with using the fine segmentation as opposed to medium and
broad is that along track artefacts in the outer beams from the
backscatter mosaic are detected by the software. These artefacts
are therefore visible in the final habitat map as elongated spatial
habitat distributions. These artefacts in the backscatter mosaic
persists after radiometric and geometric corrections are applied
and is therefore likely they are from data acquisition. When
acquiring MBES data careful selection of time varied gain, swath
width, and pulse type can reduce the number of artefacts visible in
a backscatter mosaic but is not always possible to survey
constraints such as weather conditions and strict timelines or

the prioritisation of bathymetry data over backscatter in the
settings used.

5 CONCLUSION

Overall, this study shows how AR and ARA can be included in
predictive habitat mapping when using an image segmentation
approach and RF classifier. If the study site is dominated by
sediments, including ARA derivatives will potentially improve
model performance, resulting in more accurate habitat
classification maps. These methods can be applied to any site
with bathymetry, backscatter and groundtruth data. This study is
a quantitative representation of angular response derivatives, future
work should investigate incorporating absolute grain size
measurements. Lastly, this study found that image segmentation
merge settings affect overall classification accuracy. When applying
image segmentation to create segmented surfaces finding the best
performing segmented surface should be a priority.
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